

Science With Microbeams

APS Science Advisory Committee Cross-Cut Review January 21, 2004 Introduction, J. Murray Gibson

Purpose of the Review

- Science Advisory Committee does sector-bysector reviews
- Cross-cut gives an important perspective
 - focus of review is retrospective ("where are we now")
 - additional experts invited
- Report will advise APS on strengths and opportunities
- Session is open for healthy information exchange

How did we select the program?

- Current research programs involving x-rays focused to < 10μm
- Asked sectors for their best science
- Only one presentation per sector, due to time
 - Sectors included based on scale of activity
- Further information provided as backup
 - to be posted on the web

8:45 a.m.: Overview and Charge to the Review Committee (Murray Gibson)

10:45 a.m.: High-pressure geoscience at GSECARS (Guovin Shen - Sector 13) 11:15 a.m.: Earth and environmental science at the 10:00 a.m.: Applications of microscale level at GSECARS x-ray microbeams at the (Matt Newville - Sector 13) **PNC-CAT** beamlines **Steve Heald - Sector 20)** 11:45 a.m.: The study of ferroelectric switching using x-ray synchrotron radiation (Carol Thompson - Sector 12) 2:00 p.m.: Current and planned use of micro-**Cross-Cut Review:** beams for mineral-water interface studies at **Science with Microbeams** BESSRC (Paul Fenter - Sector 12) Gerhard Materlik, Chair 4:30 p.m.: **Future of Nanobeam Studies** 2:30 p.m.: Probing ferroelectricity, charge (Eric Isaacs) density wave dynamics, and magnetism **Program** with submicron x-ray diffraction Center for (Paul Evans - Sector 7) Wednesday, January 21, 2004 Nanoscale Materials **Bldg. 402 Conference Center** 3:30 p.m.: Magnetism studies with **Advanced Photon Source** microbeams **Argonne National Laboratory** (George Srajer - Sector 4) 1:30 p.m.: Strain effects in thin film/Si substrates revealed by x-ray microdiffraction (Cev Noyan - Sector 2)

4:00 p.m.: Intracellular manipulation by TiO₂ (Gayle Woloschak - Sector 2)

9:00 a.m.: Three-dimensional polychromatic microdiffraction studies of mesoscale structure and dynamics
(Gene Ice - Sector 34)
9:35 a.m.: Microbeam imaging of crystals by coherent

9:35 a.m.: Microbeam imaging of crystals by coherent diffraction at 34-ID-C

(Ian Robinson - Sector 34)

APS X-ray Microbeam Techniques

Scanning transmission/DPC microscopy

X-ray optics are used to form a microfocused spot on the sample, which is raster-scanned to form images in absorption and differential phase contrast modes. STXM is fast and can be combined with XANES as for SFXM.

Scanning differential phase contrast image of a diatom, taken with 1.8 keV x-rays at 2-ID-B.

Scanning fluorescence microscopy

X-ray optics are used to form a microfocused spot on the sample, which is raster-scanned to form images in x-ray fluorescence contrast. SFXM is highly sensitive to elemental makeup and chemical state information.

Visible light and epifluorescence micrographs, false-color SFXM element maps, and x-ray phase contrast image of a silicoflagellate from the Southern Ocean. Data from 2-ID-E.

Micro-EXAFS

Similar to SFXM, but incident energy is scanned over a wide range to obtain extended x-ray absorption fine-structure spectra (usally fluorescence mode) at each sample point. Spectra are Fourier-inverted to discern atomic structure.

U and Fe fluorescence maps taken at 20-ID from a sediment thin section from beneath a leaking rad-waste storage tank at Hanford.

Micro-XANES

Similar to SFXM, but incident energy is scanned in fine steps to obtain x-ray absorption near-edge spectra (e.g. by fluorescence) at each sample point.

(a) Optical and (b) Cu $\rm K_a$ images of a vapor phase fluid inclusion in quartz taken at 13-ID, showing that Cu is uniformly distributed in the fluid phase. Cu K micro-XANES spectra show reversible changes in Cu oxidation with temperature. This may control speciation behavior during formation of important Cu deposits.

Full-field microscopy

High resolution x-ray optics are used to image the sample directly onto an array detector such as a CCD camera. Main advantages are speed and amenability to phase contrast methods.

Quantitative 3D reconstructions of the real part of the refractive index of a silicon atomic force microscope tip. Coherent full-field projections taken at 2-ID-B.

Fluorescence microtomography

Similar to SFXM, but sample is rotated through a large angular range to record many views of it. Projection data are filtered and reconstructed to form 3D images of the sample.

Reconstructed slice showing trace Fe content in a SiC nuclear fuel shell, using Fe K fluorescence microtomography data recorded at 2-ID-D.

Micro/nanodiffraction

Microfocusing optics such as KB mirrors and zone plates are used to isolate specific sample regions and increase the x-ray flux density in diffraction experiments.

SEM images of Sn₂O₃ nanobelts. X-ray diffraction pattern from a 30 nm x 10 nm nanobelt, recorded at 2-ID-D.

Scanning nanotomography

Similar to STXM, but sample is rotated through a large angular range to record many views through it.

Projection data are filtered and reconstructed to form 3D images of the sample.

Reconstruction of 13 projections (1573 eV) through two-level chip sample, showing W vias and AI interconnects in $(8 \mu m)^3$ volume. Data from 2-ID-B.

Inelastic x-ray scattering

Microfocusing optics such as KB mirrors are used to increase the x-ray flux density on the sample in inelastic scattering experiments.

Temperature effect on sound velocities in iron at high pressure measured at room temperature (except red crosses) at 3-ID-B.

Magnetic microscopy

Similar to SFXM, but incident x-ray beam is linearly or circularly polarized to form images of the sample with magnetic charge contrast by absorption or diffraction methods.

Magnetic diffraction contrast image of superposed $(\delta,0,1)$ (red) and $(0,\delta,1)$ (green) incommensurate reflections from spin density wave domains in a Cr single crystal at 110 K. Data recorded at 2-ID-D.

Coherent scattering/speckle

Microfocusing optics such as zone plates are used to tailor the x-ray beam phase space to the sample in coherent scattering and speckle experiments.

Coherent x-ray scattering experiment using zone plate microfopcusing optics, as at 2-ID and 8-ID.

Coherent diffraction imaging

Microfocusing optics such as KB mirrors are used to increase the x-ray flux density on the sample in coherent diffraction imaging experiments.

Coherent x-ray diffraction pattern of a single silver nanocube obtained by chemical synthesis, recorded at 34-ID-C.

APS X-ray Microbeam Applications by Scientific Discipline

APS microbeam publications by sector (2002-2003)

Allocated GUPs by sector (2003)

New microbeam initiatives

- Nanoprobe beamline (Nano-CDT, 26-ID)
 - Funded, MOU signed, construction underway
- Inelastic x-ray scattering beamline (IXS-CDT, 30-ID)
 - Funded, MOU signed, construction underway
- Micro XAS and Diffraction capability at BIOCAT
 - Under development (operational 2005)
- Environmental microspectroscopy beamline (EnviroCAT)
 - Proposed and partially-funded
- Multiplexed microfocusing beamline (UNI-CAT, 34-BM)
 - Partner User Proposal Letter of Intent submitted
- 1-4 keV coherent imaging/scattering beamline (XOR)
 - Partner User Proposal in preparation
- Microfocus x-ray crystallography
 - Needed at APS (UC Review Committee/Janet Smith)

8:45 a.m.: Overview and Charge to the Review Committee (Murray Gibson)

10:45 a.m.: High-pressure geoscience at GSECARS (Guovin Shen - Sector 13) 11:15 a.m.: Earth and environmental science at the 10:00 a.m.: Applications of microscale level at GSECARS x-ray microbeams at the (Matt Newville - Sector 13) **PNC-CAT** beamlines **Steve Heald - Sector 20)** 11:45 a.m.: The study of ferroelectric switching using x-ray synchrotron radiation (Carol Thompson - Sector 12) 2:00 p.m.: Current and planned use of micro-**Cross-Cut Review:** beams for mineral-water interface studies at **Science with Microbeams** BESSRC (Paul Fenter - Sector 12) Gerhard Materlik, Chair 4:30 p.m.: **Future of Nanobeam Studies** 2:30 p.m.: Probing ferroelectricity, charge (Eric Isaacs) density wave dynamics, and magnetism **Program** with submicron x-ray diffraction Center for (Paul Evans - Sector 7) Wednesday, January 21, 2004 Nanoscale Materials **Bldg. 402 Conference Center** 3:30 p.m.: Magnetism studies with **Advanced Photon Source** microbeams **Argonne National Laboratory** (George Srajer - Sector 4) 1:30 p.m.: Strain effects in thin film/Si substrates revealed by x-ray microdiffraction (Cev Noyan - Sector 2)

4:00 p.m.: Intracellular manipulation by TiO₂ (Gayle Woloschak - Sector 2)

9:00 a.m.: Three-dimensional polychromatic microdiffraction studies of mesoscale structure and dynamics
(Gene Ice - Sector 34)
9:35 a.m.: Microbeam imaging of crystals by coherent diffraction at 34-ID-C

(Ian Robinson - Sector 34)